

Kollaborative Erstellung eines annotierten Korpus als Grundlage für die Anwendung statistischer Ansätze der automatischen Sprachverarbeitung auf internetbasierte Kommunikation

Kay-Michael Würzner | Lothar Lemnitzer | Bryan Jurish | Alexander Geyken

Gliederung

- 1. Einführung
- 2. Statistische Tokenisierung
- 3. Kollaborativ erstellte Goldstandards

Das große Ganze

- internetbasierte Kommunikation
 - (Mikro-)Blogs
 - Foren
 - Chats
- Iinguistische Annotation auf Wortebene
 - Tokenisierung
 - Lemmatisierung
 - PoS-Tagging
- Suchmaschinenindizierung
- tiefere Annotation (i.e. Syntax)

Tokenisierung – Begriff

- Unterteilung von Fließtext in Wörter (bzw. *Token*) und Sätze
- (Vor-)Klassifizierung der Token (u.a. zur Beschleunigung der morphologischen Analyse)
- Definition:

Gegeben eine Zeichenkette $w=w_1\dots w_n\ t:\mathbb{N}\to\mathbb{B}\times\mathbb{B}$ ist eine Funktion, so dass $t(i)=\begin{cases} (true,true) & \text{if bot}@w_i\wedge\text{bos}@w_i,\\ (true,false) & \text{if bot}@w_i,\\ (false,false) & \text{andernfalls.} \end{cases}$

Herausforderungen

- Abkürzungen
- Zahlen
- Sonderzeichen
- Fremdalphabete
- Normalisierung der Silbentrennung

Regelbasierte Ansätze

- Ursprung in der *lexikalischen Analyse* von Programmiersprachen (vgl. Aho, Sethi und Ullman 1986)
- Konstruktion eines deterministischen, endlichen Automaten
- zumeist mit Hilfe eines sog. Scanner-Generators (flex, re2c etc.)
 - Patterndefinition per regulärem Ausdruck
 - resultierender Automat "hart kodiert"
 - switch-case-Konstrukte
- schnelle Laufzeit (mehrere MB pro Sekunde)

Grenzen regelbasierter Ansätze 1: Ambiguitäten

- Ambiguität einiger Zeichen bzgl.
 - bos/eos
 - bot/eot
 - Kategorie
- z.B.: '.', ':', ',', '/', [IVXLDCM]

Beispiele für Ambiguitäten

häufigste Fehlerquelle: "."

Nach einer Schätzung des Industrieministeriums sind es mehr als 800.

"Österreich wurde alleingelassen in Europa", beschwerte sich SPÖ-Zentralsekretär Josef Cap.

Satzende nach ":"

FR: Auf die Wahlerfolge der rechtsradikalen Parteien ...

Beispiele für Ambiguitäten (fortges.)

Einzelfehler Tokenisierung

```
\begin{tabular}{ll} Kaiser's-Netz & \to Kaiser 's-Netz \\ mm. & \to mm. \ [ORD] \\ CDU/CSU & \to CDU / CSU \\ Jeanne d'Arc & \to Jeanne d' Arc \\ (Verwaltungs-)Personal & \to (Verwaltungs-) Personal \\ \end{tabular}
```


Grenzen regelbasierter Ansätze 2: resultierende Kodegröße

- komplexe Tokendefinitionen (mit Überlappungen)
- Kontextdefinitionen
- verschiedene "Zustände"
- Lookahead, -back

DWDS-Tokenizer: > 300 MB C++-Kode

mehrere Stunden Kompilierzeit

Hauptspeicherbedarf > 2 GB

Statistische Ansätze

- Nutzung überzufälliger Häufigkeiten zur Entscheidungsfindung
- überwachte Verfahren
 - korrekt annotiertes bzw. kategorisiertes Material zum Training
 - Laboreiro et al. (2010): Tokenizer für Twitter
- unüberwachte Verfahren
 - Training auf Rohdaten
 - basiert auf "sicheren" Fällen
 - Kiss und Strunk (2006): Satzendeerkennung mit Hilfe von Kookkurrenzen

Ein überwachter Ansatz

- PoS-Tagger moot (Jurish 2003)
 - HMM-basiert (2. Ordnung)
 - satzweise Verarbeitung
 - Viterbi-Optimierung:

$$\tau(w_{i...n}) = \arg \max_{t_{1...n} \in T^n} P(t_{1...n} | w_{1...n})$$

$$P(t_{1...n} | w_{1...n}) = \prod_{i=1}^n P(t_i | w_{1...i-1}, t_{1...i-1}) P(w_i | w_{1...i-1}, t_{1...i})$$

• Training und Evaluierung mit Tiger

Trainingsphase

- Klassifizierung der Token bzgl.
 - Klasse $K = \{alpha, alpha-stopword, numeric, eos, dot, comma, quote, other\}$
 - Schreibung $S = \{upper, lower, caps, *\}$
 - Länge $L = \{1, \le 3, \le 5, long\}$
 - Abkürzung $A = \{known, unknown\}$
- Klassifizierung des Token-Status' bzgl.
 - Tokenanfang bot $\in \mathbb{B}$
 - Satzanfang bos $\in \mathbb{B}$

Trainingsphase (fortges.)

- Text $T \in K \times S \times L \times A$ (minus "unmögliche" Belegungen)
 - → Verdichtung des Lexikons
- Tag $\in T \times \mathbb{B} \times \mathbb{B}$ (minus "unmögliche" Belegungen)
 - \rightarrow Tagset!
- Zuweisung des korrekten Tags
- Berechnung des HMMs samt Gewichten und Glättung per Interpolation

Trainingsphase – Beispiel

Das cls:alpha—sw_cas:upper_abbr:uk_len:3_bos:1_bot:1

Unternehmen cls:alpha_cas:upper_abbr:uk_len:long_bos:0_bot:1

verkauft cls:alpha_cas:lower_abbr:uk_len:long_bos:0_bot:1

er cls:alpha—sw_cas:lower_abbr:uk_len:3_bos:0_bot:1

cls:num_cas:*_abbr:uk_len:5_bos:0_bot:1

fuer cls:alpha—sw_cas:lower_abbr:uk_len:3_bos:0_bot:1

2,5 cls:num_cas:*_abbr:uk_len:3_bos:0_bot:1

Milliarden cls:alpha_cas:upper_abbr:uk_len:long_bos:0_bot:1

cls:dot_cas:*_abbr:uk_len:1_bos:0_bot:1

Evaluierung

- 10malige Kreuzvalidierung (90:10) auf Tiger
- Mittelwerte

		händisch		automatisch	
+eos	+ Items	892 710	(100,0%)	891 110	(100,0%)
	Match	890 032	(99,7%)	889 328	(99,8%)
	NoMatch	2 678	(0,3%)	1 782	(0,2%)

Dortmunder Chatkorpus

- umfassende Sammlung von Mitschnitten verschiedener Chat-Anwendungen
- Zusammenstellung an der TU Dortmund unter der Leitung von Angelika Storrer und Michael Beißwenger
- Inhalte:
 - Chats im Hochschulkontext (E-Learning,
 Online-Zusammenarbeit, kollektive Experten-Interviews)
 - Beratung und Support (z.B. BAFÖG-Beratung)
 - Chat-Events im Medienkontext (z.B. VIPs und sendungsbegleitende Diskussionen)

Dortmunder Chatkorpus (fortges.)

- noch Inhalte:
 - "Plauder"-Chats im Freizeitbereich (Interessensgruppen z.B.
 Degu-Freundinnen)
- Basiskorpus mit 140 000 Beiträgen (ca. 1 Million Token)
- frei verfügbares Releasekorpus (ca. 500 000 Token)

Eigenschaften von Chatsprache – explorativ

- nichtkontinuierlicher "Gesprächsverlauf"
- nichtstandardkonforme Orthographie
 - kaum Interpunktion
 - "..." als Allzweckinterpunktionszeichen
 - stark reduzierte Großschreibung
 - zuällig eingestreute Selbstkorrekturen
- häufig elliptische Konstruktionen
- Gesten in Form von Emoticons, ASCII-Art und verkürzten finiten Verbformen (z.B. "*läster")

Tokenisierung von Chatsprache

- Erstellung eines hand-tokenisierten Testkorpus' (ca. 40 000 Token,
 12 unterschiedlich lange Chatprotokolle)
- ullet opportunistische Zusammenstellung $(1:1,\ 1:n,\ m:n)$
- Auflösung nicht-kontinuierlicher Gesprächsverläufe anhand von Äußerungs- und Sprecher-ID
- Trainierung eines Modells auf Basis der Chat-Protokolle
- Vergleich Tiger- vs. Chat-Modell

Tokenisierung – Evaluierung

		händisch		automatisch	
Tiger	+ Items	39 747	(100,0%)	37 271	(100,0%)
	Match	36 535	(91,9%)	36 535	(98,0%)
	NoMatch	3 212	(8,1%)	736	(2,0%)
Chat	+ Items	39 747	(100,0%)	39 158	(100,0%)
	Match	38 515	(96,9%)	38 515	(98,4%)
	NoMatch	1 232	(3,1%)	643	(1,6%)

Kollaborativ Erstellte Trainingskorpora

- verschiedene Projekte bearbeiten IBK-Daten (Empirikom)
- trotz unterschiedlicher Datengrundlagen ähnliche Phänomene
- händische Materialerstellung aufwendig (und teuer)
- → Arbeitsteilung liegt nahe

Agenda

- Datengrundlage
 - ausreichende Größe
 - Abdeckung aller benötigten Textsorten
 - repräsentativ und ausgewogen (DeRiK?)
- Annotationsebenen
 - mehr als PoS-Tagging und Lemmatisierung?
 - Mehrwortebene (i.e. Chunking)?
 - Zeichenebene?

Agenda (fortges.)

- Annotationsformat
 - bis jetzt nur Text
 - XML? (Stand-off vs. inline; Paula?)
 - geeignete Annotationswerkzeuge?
- Koordination und Qualitätskontrolle

Danke für Ihre Aufmerksamkeit!

Außerdem Dank an Michael Beißwenger und Gabriella Pein

Eigenschaften von Chatsprache – quantitativ

	Chatkorpus	Tiger
Ø Tokenlänge in Buchstaben	4,5	5,5
ø Satzlänge in Wörtern	18,1	17,6
Anteil rein alphabetischer Token in Prozent	82,8	85,0
Anteil falschgeschriebene Token in Prozent	19,6	13,6
Anteil großgeschriebene Token in Prozent	15,5	31,5